
National Cancer Registration and Analysis

Service’s Guidance

Getting started with SQL and extracting data

© 2021 National Disease Registration Service (NDRS). All Rights Reserved

Simulacrum – Getting started with SQL

1

Contents

Contents 1

1. Introduction 3

2. Loading the Simulacrum data 3

3. Writing basic SQL queries 4

A brief introduction to SQL 4

1. SELECT and FROM 4

2. WHERE 6

3. Ordering 8

4. Counting 9

5. Counting in groups 10

6. Other aggregate functions (avg, min, max) 11

7. Distinct 12

8. Case statements 13

9. Linking/joining tables 14

10. Subqueries 16

11. More advanced functions 19

4. Creating your own tables 20

Your file space 20

Creating a table in your file space 21

Deleting a table from your file space 21

Giving and revoking access your tables 21

Importing data into your file space 22

5. Useful tips 23

Capitals 23

Annotating script 24

Customising your worksheet display 24

Problem solving errors 24

Exporting data out 25

Cancelling queries 25

Closing SQL developer 25

Simulacrum – Getting started with SQL

2

Writing complex script 25

6. Appendix: Results 26

Simulacrum – Getting started with SQL

3

1. Introduction

The Cancer Analysis System (CAS) was created and is used by the National Disease

Registration Service (NDRS) to store and analyse cancer registration data and other

linked datasets for England and Wales. It was created in 2012 to combine cancer

registration data from multiple regions into one central standardised system.

CAS is an Oracle database that uses SQL queries to access our datasets. The

Simulacrum is a synthetic dataset modelled on a subset of data stored in the CAS. This

guidance has been developed to help new analysts, write basic SQL queries that could

be executed against the CAS. You should aim to work through this document and carry

out the tasks outlined to help get to know the system. This guide is designed to be used

alongside other Simulacrum guidance documents to support the development of scripts

that can be successfully executed against the Simulacrum and CAS datasets. This guide

has been adapted from existing NDRS guidance for CAS users, to be relevant to the

Simulacrum v2.1.0 dataset.

Answers to these tasks can be found in the Appendix.

To learn more about this type of database management system and how to use SQL there

are many free online tools to use such as Code Academy, Khan Academy and

W3Schools.

2. Loading the Simulacrum data

The Simulacrum is a series of csv files that can be loaded into any database management

or statistical analysis software for querying and analysis. This guidance assumes that the

Simulacrum is loaded into a database management or software system that allows SQL

queries to be executed against the data. Please check that the data has been loaded

correctly, in particular please check data types of the loaded data against those recorded

in the schema provided. The data types and SQL provided are tailored for the Oracle 11g

database on which the CAS sits, you will likely need to modify schemata and table names

described to match those for your data. You may also need to adjust some of the SQL

functions to match your dialect.

https://www.codecademy.com/learn/learn-sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.w3schools.com/sql/default.asp

Simulacrum – Getting started with SQL

4

3. Writing basic SQL queries

A brief introduction to SQL

An SQL query is a set of instructions or commands to get the data you want out of a

database. Most basic queries are structured in the same way:

• What data do you want? (SELECT statement)

• Where does the data come from? (FROM clause)

• What criteria do you want to filter the data by? (WHERE clause)

• How do you want to group or order it? (GROUP BY and ORDER BY clauses)

1. SELECT and FROM

i. Firstly, what data do you want from your table? To ask to see everything in a table

you can use the SELECT statement followed by an asterisk (*). Using the * is useful

for exploring what data within a table and how it’s structured.

Note: queries should be ended with a semi-colon (;).

Next, where does the data come from? You then need to specify where the data

should be retrieved from using a FROM clause. In the example below we’ve

specified the data should come from SIM_AV_TUMOUR table which is found in

the schema SIMULACRUM.

 SELECT *

 FROM SIMULACRUM.SIM_AV_TUMOUR;

Copy and paste the query above into a new worksheet for your database. Then

press the green arrow button to run the SQL (or CTRL+ENTER or F9). The Query

Result window should appear when the query has successfully run. This should be

showing the entire SIM_AV_TUMOUR table. You could write this query all on one

line or split it over multiple lines as above. When it comes to more complex queries

it is probably better to split over multiple lines as it is easier to read.

HINT: Useful to go to Tools > Preferences > Database (expand +) > Worksheet

and tick the box ‘Show query results in new tabs’. This will then open query results

in separate windows which helps for clarification and manging your queries.

Simulacrum – Getting started with SQL

5

ii. Next, instead of selecting everything with *, try specifying some field names. You

won’t always want to see all the columns, specifying the field names shows you

only what you’d like to see. Copy and paste the below into the worksheet (you can

delete the previous query, add this new one underneath, or open a new

worksheet). Here we’re selecting the diagnosis date and the description of the

cancer site field from the same table as before. Although the field names appear

capitalised within the table, you could use lower case when entering the field

names within the SQL query to make the layout clearer. If unsure of the full name

of a table field, you can prompt SQL to bring up the different options by writing the

first few letters e.g. “diagno” which then prompts the different fields starting with

these letters to appear in a drop down list (Note: this only works if you’ve already

added your from statement).

iii. Note the comma needed between each field name.

SELECT DIAGNOSISDATEBEST, SITE_ICD10_O2_3CHAR

FROM SIMULACRUM.SIM_AV_TUMOUR;

iv. Next, select everything from SIM_AV_TUMOUR (you have the code to do this

already). Look for the field names for year of diagnosis, age and gender. Write

some SQL that just selects these three fields.

v. Try selecting everything from the patient table.

vi. Try selecting just the vital status date and the location of death from the patient

table. Notice the date format of the vital status date field. When you specify a date,

it will need to be in this same format (to find out how to change this, go to Useful

Tips on page 26).

Each of these queries above should retrieve results relatively quickly. In the Query

Result window, you can see exactly how long it took to ‘fetch’ the first few rows in

seconds. You’ll notice for some of the queries below it will take a bit longer for the

results be retrieved.

Simulacrum – Getting started with SQL

6

2. WHERE

Now we’ve selected all the data in a table or in specific columns, you may want to

filter the results, so you don’t see every patient or every tumour. To do this you would

use the WHERE clause. This brings back data only where a specific condition is met.

i. Copy and paste the new SQL query below. This query uses the * to select every

column in the table, but instead of bringing back every patient, it will only bring

back patients diagnosed with breast cancer

SELECT *

FROM SIMULACRUM.SIM_AV_TUMOUR

WHERE SITE_ICD10_O2_3CHAR = 'C50';

ii. Write an SQL query to pull out tumours that were diagnosed on the 16 October

2018.

iii. You don’t always need something as specific as the example above, like pulling

out one date. The WHERE statement can be used to filter results in different ways

including: less or more than a number, within a range, when a field is missing, or

within a category. Try running the SQL query the below.

SELECT *

FROM SIMULACRUM.SIM_AV_TUMOUR

WHERE AGE > 90;

iv. Now try to write and run an SQL query to pull out all tumours where the patient

was older than 17 when they were diagnosed.

v. You can also specify within a range using the BETWEEN operator, putting the

smaller value first.

SELECT *

FROM SIMULACRUM.SIM_AV_TUMOUR

WHERE AGE BETWEEN 18 AND 100;

vi. You can use SQL to find cases where a field is missing, or when a field is filled in.

Try the query below. Notice the table we’re retrieving the data from has changed.

SELECT *

FROM SIMULACRUM.SIM_AV_PATIENT

Simulacrum – Getting started with SQL

7

WHERE DATE_FIRST_SURGERY IS NULL;

THEN REPLACE THE FINAL LINE WITH:

WHERE DATE_FIRST_SURGERY IS NOT NULL;

This should now return all DATE_FIRST_SURGEY entries that contain data.

vii. Your filter could look for a variable in a certain category or a list of categories. To

do this you would use the IN operator. Run the SQL query below. This is pulling

out data for all trachea, bronchus or lung tumours. Note the quotation marks

around the codes are required because this datatype is not a number. Dates, text

(string), or mixture of text and number variables (VARCHAR) all need quotation

marks.

SELECT *

FROM SIMULACRUM.SIM_AV_TUMOUR

WHERE SITE_ICD10_O2_3CHAR IN ('C33','C34');

viii. Write a query using the NOT IN operator. You could write one where the

SITE_ICD10_O2_3CHAR field was not C40 or C41. This would be pulling out all

tumours that are not bone cancer.

Note: The codes used above are the International Classification of Diseases v10

(ICD10) codes and are important for understanding national cancer data. The

coding systems have changed over time but in our datasets have been converted

to ICD10 in data from 1995 onwards. For more on cancer registration and coding

see the Cancer Registration training module here.

ix. Often you will need to include more than one condition. To do this you would

connect your where statements with operators AND and OR. The SQL query below

pulls off all tumours which are diagnosed in women who are 34. Males are coded

as ‘1’ and females as ‘2’.

SELECT *

FROM SIMULACRUM.SIM_AV_TUMOUR

WHERE AGE = 34

AND GENDER = '2';

x. Run the SQL query above but this time change AND to OR. What changes?

https://icd.who.int/browse10/2010/en
https://icd.who.int/browse10/2010/en
https://www.mylearningspace.me.uk/moodle/

Simulacrum – Getting started with SQL

8

xi. Write an SQL query that selects patients who were diagnosed on the 1 January

2001 and are female.

Note: There isn’t any limit on how many ‘AND’s you can put in your query. If you’re

using more than one condition you may want to consider introducing brackets to

avoid potential errors.

xii. Sometimes you may want to look for something but not be too specific – like

looking for patients with cancer on the first line of their death certificate. To do this

you need to use the LIKE operator with a wildcard character (%). The query below

selects patients who have any mention of cancer on their death certificate.

SELECT *

FROM SIMULACRUM.SIM_AV_PATIENT

WHERE DEATHCAUSECODE_1A LIKE ('%c%');

xiii. When you’re specifying what you want to find in your WHERE clause, be aware it is

case sensitive. Run the query below. Adding UPPER after LIKE converts all

lowercase letters into uppercase, so returns all entries where the text is upper or

lower case. Now remove UPPER. What happens?

SELECT *

FROM SIMULACRUM.SIM_AV_PATIENT

WHERE DEATHCAUSECODE_1A LIKE UPPER('%c%');

3. Ordering

Sometimes you may want to look at the data in a particular order.

i. Run the SQL query below. This would be used when you want to see the most

recent data first. When was the most recent tumour diagnosed?

SELECT *

FROM SIMULACRUM.SIM_AV_TUMOUR

ORDER BY DIAGNOSISDATEBEST DESC;

Note: Did you notice how long this query took to run compared to the previous

queries? Adding an ORDER BY clause to a query will slow it down – keep this in mind

when you’re writing more complex queries.

Simulacrum – Getting started with SQL

9

Can you change the order from descending (DESC) to ascending (ASC)? When was

the first tumour on the database diagnosed?

You may want to see the results by the most recent diagnosis year

(DIAGNOSISYEAR) and then by diagnosis date. Write an SQL query that would do

this. Note the SQL EXTRACT(YEAR FROM DATE) function may be useful here.

Note: The ORDER BY statement is the last part of the command to run. You can also

write ORDER BY 1, 2. This will order by whatever is in column 1 first then column

2.

4. Counting

In the examples above we’ve covered how to retrieve data, filter and sort it. In SQL,

there are also aggregate functions such as COUNT. Aggregate functions combine

multiple rows of values into a single value. When using functions like COUNT, be careful

to think about exactly what you’re counting - rows, tumours, patients, unique patients

or a subset of one of these.

i. Count how many rows are in the tumour table.

SELECT COUNT (*)

FROM SIMULACRUM.SIM_AV_TUMOUR;

ii. Count how many patients there are in the patient table.

iii. Compare your answers to the last two questions. Why are they different?

You can also be more specific with your counts by only selecting by certain criteria.

SELECT COUNT (*)

FROM SIMULACRUM.SIM_AV_TUMOUR

WHERE DATE_FIRST_SURGERY IS NULL;

iv. Run the query above to count how many rows have a null

DATE_FIRST_SURGERY, and then write another query to count how many rows

have a DATE_FIRST_SURGERY filled in. Check it adds up to the total number of

rows.

v. Write a query that counts how many patients are alive.

Simulacrum – Getting started with SQL

10

vi. Write a query to count how many tumours were diagnosed in patients aged over

100.

vii. You can also count data items. Sometimes data items are null (blank), these are

not counted when you do this. Below is a query that counts how many rows there

are, how many rows with a TUMOURID, and how many rows with an ER_STATUS

SELECT COUNT (*)

, COUNT(TUMOURID)

, COUNT(ER_STATUS)

FROM SIMULACRUM.SIM_AV_TUMOUR;

Note: It’s good practise to include the comma at the front of the statement. By doing

this you can easily use a double dash (--) to run the query without using this row.

viii. Does every row have a TUMOURID? Does every row have an ER_STATUS?

ix. What proportion of the patient table has an underlying cause of death coded?

5. Counting in groups

You may want to know the total count split by a variable, like the number of tumours

diagnosed by gender. For this you would use GROUP BY. Whenever an aggregate

function is used (e.g. COUNT), all other variables being used, like gender in the

example below, must also be in the GROUP BY clause. The ORDER BY clause is

optional.

SELECT GENDER, COUNT (*)

FROM SIMULACRUM.SIM_AV_TUMOUR

GROUP BY GENDER

ORDER BY GENDER;

Run the query above. Are there more men or women? Try running the query without

GROUP BY GENDER – what error message do you see?

What are the ethnicity and gender breakdown of lung cancer patients?

Simulacrum – Getting started with SQL

11

6. Other aggregate functions (avg, min, max)

Counting is an aggregate function. There are many other useful aggregate functions

like sum (SUM), average (AVG), minimum (MIN) and maximum (MAX).

SELECT MAX(AGE), SUM(AGE), COUNT(AGE), AVG(AGE)

FROM SIMULACRUM.SIM_AV_TUMOUR;

Run the query above. How old is the oldest person on the database diagnosed with

cancer? Do you think this is a data quality problem? Can you find out what sort of

cancer they had? What is the average age of a cancer patient?

These aggregate functions can also be combined with the group by function e.g. the

maximum age by gender. Try writing this into a query. How old is the oldest women?

Write an SQL query to find the average age of men with cancer and the average age

of women with cancer.

Have people gotten older? Write a query that looks at how many cancers there are

by year of diagnosis, and the average age by year of diagnosis. HINT:

EXTRACT(YEAR FROM DATE) will be helpful here.

In your results you may not want to see all the decimal places. The ROUND function

can be used to do this.

SELECT GENDER, MAX(AGE), ROUND(AVG(AGE), 2)

FROM SIMULACRUM.SIM_AV_TUMOUR

GROUP BY GENDER

ORDER BY GENDER;

If you didn’t want to see the full name of the field in the results, you can rename it by

following the name by AS then the new name in your query. Try the below:

SELECT GENDER, MAX(AGE), ROUND(AVG(AGE), 2) AS AVG_AGE

FROM SIMULACRUM.SIM_AV_TUMOUR

GROUP BY GENDER

ORDER BY GENDER;

You can also use the TO_CHAR function to round the number of decimal places – this

function changes the number to text. You can also use this same function to display

Simulacrum – Getting started with SQL

12

the dates in a different format. In the Simulacrum the default date format is ‘yyyy-mm-

dd’.

SELECT DIAGNOSISDATEBEST

, TO_CHAR(DIAGNOSISDATEBEST,'YYYY/MM/DD')

, TO_CHAR(DIAGNOSISDATEBEST,'DD/MM/YYYY')

, TO_CHAR(DIAGNOSISDATEBEST,'FMMONTH DD, YYYY')

FROM SIMULACRUM.SIM_AV_TUMOUR;

Note: This can also be changed under Tools, then Preferences, Database (NLS).

7. Distinct

The DISTINCT clause is used with the SELECT command to remove duplicates. This

is useful for counting e.g. unique patients. To do this you would need to select only

PATIENTID.

i. Try running the query below. What happens when you remove distinct? What are

the results showing you?

SELECT COUNT (DISTINCT PATIENTID)

FROM SIMULACRUM.SIM_AV_TUMOUR

WHERE SITE_ICD10_O2_3CHAR IN

('C50','C53','C54','C55','C56')

AND DIAGNOSISDATEBEST BETWEEN ‘2019-01-01’ AND ‘2019-12-

31’;

Note: The command is dependent on what else is in the select list. In this query you

are counting all patients that are diagnosed with any of these types of tumours.

SELECT COUNT (DISTINCT PATIENTID), SITE_ICD10_O2_3CHAR

FROM SIMULACRUM.SIM_AV_TUMOUR

WHERE SITE_ICD10_O2_3CHAR IN

('C50','C53','C54','C55','C56')

AND DIAGNOSISDATEBEST BETWEEN ‘2019-01-01’ AND ‘2019-12-

31’GROUP BY SITE_ICD10_O2_3CHAR;

In this query you are counting how many patients had each type of cancer. This would

include anyone who was diagnosed with breast cancer and ovarian cancer in both

Simulacrum – Getting started with SQL

13

rows. If you added these results together you would be counting twice anyone that

has been diagnosed with multiple tumour types.

What total count did you get for this query? How much does it differ from the previous

query?

Note: If you are linking and duplicate rows are produced you shouldn’t really use

DISTINCT to account for this. It may well indicate an issue with the linkage which

could need to be resolved. Linking tables together is explained in more detail in

section 9.

8. Case statements

You may need to make a new field based on values in another field that splits the data

into different groups – like age groups. The function that can do this is CASE WHEN.

Notice it is used as another variable so will need a comma if it’s used in a list. This

function has another group (ELSE) which is optional and needs to be ended with a

new name (END AS).

SELECT AGE

,CASE

WHEN AGE <25 THEN 'UNDER 25'

WHEN AGE <70 THEN '25 - 69'

ELSE '70+'

 END AS AGEGROUP

FROM SIMULACRUM.SIM_AV_TUMOUR;

The formatting/layout isn’t important here - it could be written all on one line or split

across multiple lines. As you write more complex scripts you may develop a style of

how you prefer to format them, but generally it’s easier to read code if it’s split across

multiple lines.

Run the above SQL query. Can you amend it so that it groups people into under 40s,

40 – 80, and over 80s?

Write an SQL query using the CREG_CODE field that returns, for every tumour, ‘In

ECRIC region’ or ‘Not in ECRIC region’. The ECRIC code is Y0401.

Case statements can also be used to derive a new field from multiple fields by using

AND and OR. Run the query below. What is it doing?

Simulacrum – Getting started with SQL

14

SELECT PATIENTID

,CASE WHEN DIAGNOSISDATEBEST BETWEEN TO_DATE(‘2019-01-

01’,’YYYY-MM-DD’) AND TO_DATE(‘2019-12-31,’YYYY-MM-DD’)

AND SITE_ICD10_O2_3CHAR IN ('C50')

THEN ‘BREAST_2019’

ELSE ‘BREAST_OTHER_YEAR’

END AS BREAST_FLAG

FROM SIMULACRUM.SIM_AV_TUMOUR;

This function can be useful if you ever need to create flag specific rows in your data. In

the example above you might be flagging where the data needs to be removed from

your data extract.

In your case statement you may want to use multiple variable types. For example, you

may want to specify a date if there is a value in another field. To do this you would need

to change the variable type using the TO_CHAR function.

SELECT PATIENTID

,CASE WHEN VITALSTATUS IN ('A')

THEN TO_CHAR(DIAGNOSISDATEBEST, 'DD/MM/YYYY')

END AS DIAGDATEIFA

FROM SIMULACRUM.SIM_AV_TUMOUR

WHERE SITE_ICD10_O2_3CHAR = 'C50'

AND DIAGNOSISDATEBEST BETWEEN TO_DATE(‘2018-01-

01’,’YYYY-MM-DD’) AND TO_DATE(‘2018-12-31,’YYYY-MM-DD’);

DECODE is similar to CASE except that it has less functionality, however it is shorter to

write if you need to use very long non-complex case statements.

9. Linking/joining tables

You may need to use data from more than one table. To do this you would link or join

tables together. Whenever you link tables, you’ll need to think carefully about the

relationship between the tables you’re joining. How two tables link will depend on the

tables you’re joining. One of the following situations could happen:

• For every row in the first table, there is exactly one row in the second table. This

should be what happens with look up tables e.g. a table with ICD codes links to

the cancer type in text.

• For some rows in the first table, there are no rows in the second table. For example,

you might have a table of all cancers and a table of all surgeries. Some cancers

won’t have had surgery.

https://www.techonthenet.com/oracle/functions/decode.php

Simulacrum – Getting started with SQL

15

• For some rows in the first table, there is more than one row in the second table.

For example, some cancers have had more than one surgery.

• For some rows in the first table, there are no rows but for others there is more than

one.

It’s very easy to make a mistake when joining tables. For example:

SELECT *

FROM SIMULACRUM.SIM_AV_PATIENT, SIMULACRUM.SIM_AV_TUMOUR;

i. Run the query above. It should look like the patient table and the tumour table side

by side. How many rows are there in the patient table? How many rows are there

in the tumour table? How many rows does the query above give you? Can you

work out what the query has done? Comparing the patient IDs from the patient

part of the table and the tumour part of the table might help.

This is called a Cartesian cross product. Every row of the patient table has been

stuck next to every row of the tumour table, even if they have nothing in common

which is incorrect. There needs to be criterion to join on.

ii. Run the query below. This is joining the tables on the PATIENTID by a left join.

Compare the patient ID columns. Count how many rows the query is returning.

SELECT * FROM SIMULACRUM.SIM_AV_PATIENT

LEFT OUTER JOIN SIMULACRUM.SIM_AV_TUMOUR

ON SIMULACRUM.SIM_AV_PATIENT.PATIENTID =

SIMULACRUM.SIM_AV_TUMOUR.PATIENTID;

Note: A LEFT JOIN joins the two tables and selects all rows in the first table that

match those in the second on the join criterion plus any rows in the first table that

don’t match. In the example above the tables are matching on PATIENTID.

There are also INNER JOINs and RIGHT JOINs. An INNER JOIN selects all

rows in the first table that match those in the second on the join criterion only. A

RIGHT JOIN selects all rows in the first table that match those in the second on the

join criteria plus any rows in the second table that don’t match.

To find out more about all joins click here.

https://www.w3schools.com/sql/sql_join.asp

Simulacrum – Getting started with SQL

16

Instead of writing out the table name each time you need to join two tables you can

give the table an abbreviated name or a single letter. In the query below AV_PATIENT

is named ‘AVP’ and AV_TUMOUR is named ‘AVT’.

SELECT *

FROM SIMULACRUM.SIM_AV_PATIENT AVP

LEFT OUTER JOIN SIMULACRUM.SIM_AV_TUMOUR AVT

ON AVP.PATIENTID = AVT.PATIENTID;

Run the query below.

iii. Can you then count how many tumours there are for each behaviour type? Try

looking at the queries above if you need a reminder.

SELECT TUMOURID, BEHAVIOUR_ICD10_O2

FROM SIMULACRUM.SIM_AV_TUMOUR;

You’ll need a lookup table to make sense of the BEHAVIOUR_ICD10_O2 code. In the

previous examples, the tables we’ve used have all been retrieved from the

SIMULACRUM schema. For the purposes of this query, we assume the lookup tables

provided with the Simulacrum have been loaded into the same database is under a

schema called LOOKUPS. Run the query below. This lookup table turns the

behaviour code into a short description.

SELECT *

FROM LOOKUPS.Z_BEHAVIOUR;

Now join the two tables together. For every tumour ID you should have the words as well

as the codes. Can you see how the two tables have been joined together?

SELECT TUMOURID, BEHAVIOUR_ICD10_O2, DESCRIPTION

FROM SIMULACRUM.SIM_AV_TUMOUR AVT

LEFT OUTER JOIN LOOKUPS.Z_BEHAVIOUR ZB

ON AVT. BEHAVIOUR_ICD10_O2 = ZB.CODE;

10. Subqueries

In some cases, you’ll need to run one query to get a table, and then do further queries

on that table. Two common ways of doing this are by using a WITH clause or using

nested queries. For most queries, the approach you use will be down to personal

preference. However, as queries become more complex, the WITH clause may be

mailto:SPRINGMVC3.zbasis@CAS2210
mailto:SPRINGMVC3.zbasis@CAS2210

Simulacrum – Getting started with SQL

17

more efficient in retrieving data. The example below uses the WITH clause to find out

how many tumours had surgery in 2010.

Firstly, you can write a query to get all tests of EGFR:

SELECT *

FROM SIMULACRUM.SIM_AV_GENE

WHERE GENE_DESC='EGFR'

AND EXTRACT(YEAR FROM DATE_OVERALL_TS)IN ('2018',’2019’);

You can amend this query so instead of all records, it returns the unique IDS of all

tumours tested:

SELECT DISTINCT TUMOURID

SIMULACRUM.SIM_AV_GENE

WHERE GENE_DESC='EGFR'

AND EXTRACT(YEAR FROM DATE_OVERALL_TS) IN ('2018',’2019’);

Or to give you more information on the results of the EGFR tests:

SELECT OVERALL_TS, COUNT(*)

FROM SIMULACRUM.SIM_AV_GENE

WHERE GENE_DESC='EGFR'

AND EXTRACT(YEAR FROM DATE_OVERALL_TS) IN

('2018',’2019’)GROUP BY OVERALL_TS;

Now you want to write a query on this query. One way to do this is to use WITH

[TABLENAME] AS at the start. You can call this table anything you want.

WITH EGFRRESULTS AS

(SELECT OVERALL_TS, COUNT(*)

FROM SIMULACRUM.SIM_AV_GENE

WHERE GENE_DESC='EGFR'

AND EXTRACT(YEAR FROM DATE_OVERALL_TS) IN ('2018',’2019’)

GROUP BY OVERALL_TS

)

SELECT * FROM EGFRRESULTS;

Now you can do the query below to restrict to only normal and abnormal results:

Simulacrum – Getting started with SQL

18

WITH EGFRRESULTS AS

(SELECT OVERALL_TS, COUNT(*)

FROM SIMULACRUM.SIM_AV_GENE

WHERE GENE_DESC='EGFR'

AND EXTRACT(YEAR FROM DATE_OVERALL_TS) IN ('2018',’2019’)

GROUP BY OVERALL_TS

)

SELECT *

FROM EGFRRESULTS

WHERE OVERALL_TS IN ('a:abnormal', 'b:normal') ;

Then you can start doing things like seeing how many tumours had 1 gene tested, how

many had 2 genes tested, etc. It’s easiest if you give the COUNT(*) column a proper

name using AS

WITH TUMOURSWITHGENETESTS AS

(SELECT TUMOURID, COUNT(*) AS GENESCOUNT

FROM SIMULACRUM.SIM_AV_GENE

WHERE

EXTRACT(YEAR FROM DATE_OVERALL_TS) IN ('2018',’2019’)

GROUP BY TUMOURID)

SELECT GENESCOUNT, COUNT(*)

FROM TUMOURSWITHGENETESTS

GROUP BY GENESCOUNTORDER BY GENESCOUNT ASC;

Multiple tables can be strung together in this way if needed. Each can retrieve data

from any of the tables above it. They can be structured like the below:

WITH [table1] AS ([query]) -- first query

, [table2] AS ([query]) -- second query

, [table3] AS ([query]) -- third query (etc)

[select * from table3] -- final query

Note: You only use the WITH in the first table of the query. The rest of the tables will

begin with a comma (as if in a list).

If this query was written as a nested query, it would look like this:

Simulacrum – Getting started with SQL

19

SELECT GENESCOUNT, COUNT(*)

FROM

(SELECT TUMOURID, COUNT(*) AS GENESCOUNT

FROM SIMULACRUM.SIM_AV_GENE

WHERE

EXTRACT(YEAR FROM DATE_OVERALL_TS) IN ('2018',’2019’)

GROUP BY TUMOURID) TUMOURSWITHGENETEST

GROUP BY GENESCOUNT

ORDER BY GENESCOUNT ASC;

The first query is nested within the second. In the same way as above, we’re asking

the results from the second query to come from the results table of the first query. This

table has been called TUMOURSWITHGENETESTS but could be called a single letter.

Multiple tables can be nested within a query.

What is the difference between ‘how many cancers had a gene test in 2019’ and ‘how

many cancers diagnosed in 2019 had a gene test’? Can you write an SQL query for

the second question? Hint: you can use a JOIN to do this.

11. More advanced functions

There are many more advanced functions you can use in SQL. Below we’ll briefly

discuss some of the more useful ones you may need.

Row_number and Rank

ROW_NUMBER is a function that assigns a unique number to each row in your dataset,

or each row in a section of your dataset. For example, you could number by PATIENTID

which would give each patient a different row number (if there were two records for

that patient they would have the same number), or you could number by PATIENTID

and TUMOURID which would give each tumour that a patient had a different row

number. RANK is similar but assigns a ranked number to each row, or each row in a

partition/section of your dataset. These can be useful when dealing with duplicates. To

learn about ROW_NUMBER and RANK, go to the oracle webpage here and here.

Regular expressions

The regular expression function is a way of searching for things in a flexible way. For

example, if you wanted to look for any cancer site that contains the word ‘skin’ or any

provider with ‘royal’ in the name. To learn about regular expressions, go to the oracle

webpage here.

https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions137.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions123.htm
http://docs.oracle.com/cd/B19306_01/appdev.102/b14251/adfns_regexp.htm

Simulacrum – Getting started with SQL

20

Pivot and Unpivot

The PIVOT function in SQL is a way of turning a data table with the data in rows into

their own columns. UNPIVOT can turn the results back, from columns into rows.

However, if you’re only exploring data then Excel would be preferable. If you need to

do considerable data manipulation you should consider using a statistical package

such as STATA to do this more easily. To learn about PIVOT and UNPIVOT, go to

the oracle webpage here.

Listagg

The LISTAGG function is a way of concatenating values from multiple rows into a single

string, according to an ORDER BY expression. This is useful for listing all distinct values

in a field into one for example concatenating all chemotherapy drug names used into

a single string for each cancer type. To learn more about LISTAGG, go to the oracle

page here.

4. Creating your own tables

Your file space

Each user has a limited amount of space to create their own tables. If you run out of

space, you may need to delete old tables you have created and possibly empty your

recycle bin.

You can check how full your file space is with the following code:

SELECT UTQ.BYTES/1024/1024, UTQ.MAX_BYTES/1024/1024, UTQ.*

FROM USER_TS_QUOTAS UTQ;

SELECT * FROM USER_RECYCLEBIN ORDER BY ORIGINAL_NAME,

OBJECT_NAME;

SELECT US.BYTES/1024/1024 AS BYTES_MB, UT.COMPRESSION,

UT.COMPRESS_FOR, UT.*

FROM USER_TABLES UT

INNER JOIN USER_SEGMENTS US

 ON UT.TABLE_NAME = US.SEGMENT_NAME

ORDER BY US.BYTES/1024/1024 DESC;

http://www.oracle.com/technetwork/articles/sql/11g-pivot-097235.html#close
https://docs.oracle.com/cloud/latest/db112/SQLRF/functions089.htm#SQLRF30030

Simulacrum – Getting started with SQL

21

Creating a table in your file space

To create a table in your own file space using data from the Simulacrum, open a new

worksheet for the database you would like the table to be stored. In the tab, write the

query to select the data you want from the Simulacrum. Then add brackets around this

query, and in the top line use CREATE TABLE followed by a name for your table (no

spaces). Like the below:

CREATE TABLE TABLE_01 NOLOGGING AS

(SELECT PATIENTID

SIMULACRUM.SIM_AV_TUMOUR WHERE EXTRACT(YEAR FROM

DIAGNOSISDATEBEST) BETWEEN 2018 AND 2019);

Note: Always include NOLOGGING as this will speed up your query.

Clicking run on the query will create a table called TABLE_01. It can be found in the

‘Tables’ section of the snapshot you ran your query in. (You might need to right click on

the ‘Tables’ tab and press ‘Refresh’ for your new table to appear). You can then use the

data in this table as you would the other main tables.

Deleting a table from your file space

To delete a table from your filespace you should use the DROP TABLE function.

DROP TABLE TABLE_01 PURGE;

You could also right click on your table, click DROP and then APPLY. By ticking PURGE

(or including it in your code) your table will be unrecoverable, by not ticking purge it will

go into the recycle bin.

Giving and revoking access your tables

**Please be aware of the permission level of the person you are granting table access to

and do not give them access to fields they would not normally be able to see.

You may need to give another individual user access to your tables. To do this you would

use the GRANT function. This will allow the user to view and alter your table.

GRANT SELECT, ALTER ON ANALYSISYOURNAME.TABLE_01 TO

ANALYSISOTHERUSER;

You can revoke table access using the command below.

Simulacrum – Getting started with SQL

22

REVOKE SELECT, ALTER ON ANALYSISYOURNAME.TABLE_01 FROM

ANALYSISOTHERUSER;

Importing data into your file space

You may not need to do this too often but if you do instructions are below.

Firstly, you’ll need to get your data in the right format. SQL developer will accept csv,

excel (.xls or .xlsx) or plain text (.tsv). You’ll need to save your file in the correct format

for the upload to be successful: a csv file is where the fields are separated by commas

while a text file may have delimitators (values that separate the fields) that are spaces “

“, pipes “|”, or semicolons “;”.

Right click on ‘Tables’ in the schema space that you would like you table to appear. Then

on Click on Import Data. Click on Browse and find your file and click ‘open’.

Look at the data preview. Does it look right? You’ll need to specify if it has headers here.

If the data doesn’t look right click cancel check the file format you have used is correct. If

your dates have swapped day and month around, you’ll be able to change the date type

later. Click next.

Give your table a name (no spaces) and click next again. Here you can choose the

columns you need at this point. If you need all you can don’t change anything here. Click

next.

In this window you can verify the data you are going to upload for each column. You

change the column names, the datatype and the size. Size is the maximum field length,

i.e. how many characters a field is allowed to have. SQL developer will automatically

predict the datatype and maximum field length by looking at the first 20 rows of your file

so these could be incorrect. Look at each of your columns to check what’s been added

and that there are no error flags that appear in the Data window below.

There are multiple reasons why your data may show an error flag. Here are a few

examples:

If the first few rows look like dates and then a text word appears. This is because SQL

developer has assumed all data in the column are dates. A way to avoid this is to either

correct the errors in the original file or change the columns into the ‘varchar2’ datatype

and correct the errors later (e.g. using TO_DATE function).

Simulacrum – Getting started with SQL

23

If there is a higher number of characters in the field than specified in the column field

length. To correct this, you’ll need to increase the set field length of the column. If you

don’t know your data well, you can always set a high number that will capture everything.

Note, if the first few rows of your table are blank the SQL could have predicted the field

length to 0.

If your column names have spaces in them. If your original data had a column called DATE

OF DIAGNOSIS, you will have to change the name to DATE_OF_DIAGNOSIS or

DATEOFDIAGNOSIS.

If you have dates in the wrong format. You can choose the date format for your column

from the format drop down menu.

If your data looks ok, click Next and then Finish. You’ll see a loading bar and then either

a pop-up window that says Upload Successful or Upload Failed.

If the upload failed: SQL Developer automatically only checks on the first 100 rows (unless

you unticked this box during the upload), so even if there is success for the verification it

could fail to upload after this point because of an issue in a later row. If this happens you

can press cancel, and then look at your original data to spot the reason for the error.

You’ll need to go back to the beginning of the upload process and remember any other

changes you previously made in the verification stage.

If the upload is successful: you should see your new table in the database it was loaded

in, under Tables. You may need to refresh the connections before it appears (click the

blue arrows symbol in the connections panel).

Keep a local file copy of any scratch table data you create so you can re-load it if

necessary.

5. Useful tips

Below are some other useful to tips to get you started in SQL.

Capitals

Select the Upper/Lower/InitCap function to the right-hand side of the toolbar to

automatically change any text from capital to lower case, or vice versa

Simulacrum – Getting started with SQL

24

Annotating script

When writing an SQL script, its best practice to include a title and some notes explaining

the purpose of the script, when it was created and notes to explain each stage in your

query. These annotations will be invaluable when you come to look at your script later

and for other people to be able to use and understand your script. Notes can be added

by using a double dash (--) or /* at the beginning and */ at the end.

We’d recommend something like this:

/* Counting the number of patients who were diagnosed with

lung cancer in 2014, by gender and age

CREATED BY: Jane Smith

DATE: 09.02.2024

*/

-- 1: Selecting variables

The annotating functions can also be used when you want to keep in sections of your

script in that are no longer being used.

Customising your worksheet display

It is possible to customise your SQL developer query tab, such as having numbered lines

(useful for being able to find errors), changing the colour of text when it is a

function/field/string (useful for reading script more easily), and using a different date

format permanently (to save time if frequently converting). To do this, click on Tools then

Preferences then Code Editor (Line Gutter and PL/SQL Syntax Colours) or Database

(NLS).

Problem solving errors

Sometimes a query will not run and will come back with an error message. These error

messages will indicate a line number to trace back to look for your error. If you’re unsure,

Simulacrum – Getting started with SQL

25

these error messages are usually common so can be googled to find answers. Websites

like Stack Overflow and the Oracle website are very useful for finding solutions.

Exporting data out

To select all the data quickly you can click CONTROL+SHIFT+COPY which will include

both the headers and the data. Using CTRL+COPY will only copy the data. Alternatively,

you can export data using the export function in SQL. Right click any column and select

the export option.

Please be aware of exactly where you are exporting the data whenever you take data out

of CAS as it could be patient identifiable. Only save data to places that have been

designated as secure for patient identifiable data (PID).

Cancelling queries

You may run a query that will not finish (the loading sign will not disappear) and needs to

be cancelled. This can be done by clicking the red cross next the loading sign; depending

on what you are running this could be instant or take some time.

Closing SQL developer

When you close SQL developer it will ask you if you would like to commit changes or roll

back changes. Click commit unless you have created a table you do not want to save.

Writing complex script

If you’re writing a complex script and coming across issues that your line

manager/colleagues can’t solve, then there are colleagues in the NCRAS team that have

advanced SQL and/or CAS knowledge who may be able to help:

• simulacrum@healthdatainsight.org.uk

Simulacrum – Getting started with SQL

26

6. Appendix: Results

Below are results to tasks 1-10. The answers below are correct when using Simulacrum

v2.1.0 .

1. This section was about exploring the tables and fields.

2.

i. This section was about exploring the WHERE clause.

ii. This section was about exploring the WHERE clause.

iii. This section was about exploring the WHERE clause.

iv. This section was about exploring the WHERE clause.

v. This section was about exploring the WHERE clause.

vi. This section was about exploring the WHERE clause.

vii. This section was about exploring the WHERE clause.

viii. This section was about exploring the WHERE clause.

ix. This section was about exploring the WHERE clause.

x. Using AND retrieves data for anyone aged 34 and is also female. Using OR

retrieves data for anyone aged 34 (male or female) or is female (any age).

xi. Use: WHERE GENDER = 2 AND DIAGNOSISDATEBEST =

‘2001/01/01’; 311

xii. Removing UPPER should show patients with a death cause code including only

lowercase ‘c’. There shouldn’t be any of these.

3.

i. 2019.

ii. 2016

iii. SELECT EXTRACT(YEAR FROM DIAGNOSISDATEBEST) AS

DIAGNOSISYEAR, DIAGNOSISDATEBEST

FROM SIMULACRUM.SIM_AV_TUMOUR

ORDER BY DIAGNOSISYEAR, DIAGNOSISDATEBEST;

4.

i. 1,995,570

ii. Use the SIM_AV_PATIENT table: 1,871,605

iii. This is because the first is counting tumours and the second is counting

patients. There are more tumours than patients as patients can have more

than one cancer diagnosis.

Simulacrum – Getting started with SQL

27

iv. 1,270,485 + 725,085 = 1,995,570. This total should be the same as the

answer above.

v. Use the SIM_AV_PATIENT table: WHERE VITALSTATUS = ‘A’:

1,232,237

vi. Use the SIM_AV_TUMOUR table: WHERE AGE >100: 781

vii. 1,995,570; 1,995,570; 176,313

viii. Yes; No.

ix. Use the SIM_AV_PATIENT table: WHERE

DEATHCAUSECODE_UNDERLYING IS NOT NULL; 623,087; 33.3%

5.

i. More women

ii. You should have data for 3 groups (1,2,9) for gender. You should have data

for 23 ethnicity groups and a null group D.

6.

i. Oldest = 107; Use: WHERE AGE = 107. Lung cancer; Average =

67.1.

ii. Use the MAX select function

iii. Use the AVG select function and the group by clause; 69 for men vs 65 for

women.

iv. You should have data for years beginning from 2016 to 2019, the number

of tumours, the maximum age, and the average age. The average age

should remain similar over time.

7.

i. 63,044; 64,704. Some patients have more than one diagnosis in this group.

ii. You should have data for the 5 cancer types with the number of patients.

Summing these counts gives 63,222.

8. This section was about using case statements.

9.

i. The query has put every row from the AV_TUMOUR table against every

row of the AV_PATIENT table. 1,995,570; 1,871,605; 3,734,918,789,850

ii. Use COUNT in select statement; 1,995570.

iii. Use COUNT in the select statement and GROUP BY

(BEHAVIOUR_ICD10_O2). You should have data for 7 behaviour codes

codes (0-3,5,6 and 9) with the number of tumours for each.

Simulacrum – Getting started with SQL

28

10.

viii. The first is the year of the test, while the second is year of diagnosis. Use:

SELECT COUNT (DISTINCT AVT.TUMOURID)

FROM SIMULACRUM.SIM_AV_TUMOUR AVT

LEFT JOIN SIMULACRUM.SIM_AV_GENE AVTG

ON AVT.TUMOURID = AVTG.TUMOURID

WHERE EXTRACT(YEAR FROM AVT.DIAGNOSISYEAR) = '2019'

AND GENE_DESC IS NOT NULL;

= 83698.

